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Lee waves in three-dimensional stratified flow 
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The effect of a shallow isolated topography on a linearly stratified, three-dimensional, 
initially uniform flow in the x-direction is considered. The Green-function solution 
for the velocity disturbance due to this topography, which is equivalent to that due 
to a dipole a t  the origin, is shown to be without swirl, i.e. the velocity disturbance 
lies strictly in planes passing through the x-axis. Thus this disturbance can be 
described in terms of a stream function. The asymptotic forms of the wavelike portion 
of the stream function and the vertical displacement field are obtained. The latter 
is in agreement with the limited versions due to Crapper (1959). The Gaussian 
curvature of the zero-frequency dispersion surface is obtained analytically as a step 
in the stationary-phase calculation. The model is extended to determine the vertical 
displacement field for an arbitrary shallow topography far downstream. For topo- 
graphies that are even functions of x and y i t  is shown that the details of the topo- 
graphy affect the displacement field only in the vicinity of the x-axis. Elsewhere, 
the amplitude of the displacement is proportional to the net volume of the topography. 

1. Introduction 
The study of stratified three-dimensional flows over a shallow topography is 

considerably less advanced than that of two-dimensional flows. A major difficulty lies 
in adequately describing this complex flow, for, apparently, a stream-function solution 
cannot be utilized as in the two-dimensional cases. Investigations (e.g. Wurtele 1957 ; 
Crapper 1959) have either been constrained to examine only the vertical velocity field 
or, (e.g. Smith 1980) have used the simplifying hydrostatic approximation. 

At this point we can fairly state that the simplest problem, that of uniform, 
unbounded, stratified flow over an isolated topography, is not totally solved. We shall 
reexamine this problem and shall show that the velocity disturbance due to a dipole 
is without swirl and can be described in terms of a stream function. We shall obtain 
an asymptotic form of the wavelike portion of this disturbance and compare its form 
with that obtained by Crapper (1959). The structure of both the three-dimensional 
velocity and displacement fields due to the dipole will be examined. The model is then 
extended to determine the vertical displacement field due to  an arbitrary topography. 

We note that the model assumes an inviscid slightly disturbed flow. For a 
topography with sufficiently small slopes and heights everywhere, the small- 
disturbance theory should be valid. For high-Reynolds-number flows the effects of 
viscous forces should be limited to thin boundary layers and separated regions. For 
a shallow sloped topography it is expected that separated regions will be small and 
will have a limited effect on the external inviscid flow. 
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2. Formulation of the problem 
We consider the small disturbance to a linearly stratified ( p ,  = Po( 1 - N 2 z ‘ / g ) )  

uniform flow of speed U in the positive x-direction due to  a shallow topography 
h’(x’, y’) superimposed on the z’=0 plane (figure 1 ) .  The dimensionless perturbation 
equations under the Boussinesq approximation are 

av _ -  - - Vp--&, 
ax 

v - v  = 0. 

The boundary conditions are : 

lim v = 0. 
z - r m  

(3) 

We note that if the disturbance is wavelike, condition (5) is supplemented by the 
requirement that  the vertical component of the group-velocity vector be positive. 

The previous equations have been non-dimensionalized using L = U / N  and a 
topographic reference height h,, as follows : 

As Crapper (1959) has shown, the range of the variable z can be extended from 
0 d z < co to - 00 < z < + co by replacing (3) with 

au au auf ah -+-+- = I”-(x,y)S(z). ax ay az ax (7 )  

As ( l ) ,  ( 2 )  and (7) admit a solution for w that is an odd function of z ,  i.e. 
w(x, y, 0+) = - w(x, y, 0-) , when (7) is integrated in z from z = 0- to z = Of, condition 
(3) is recovered. Thus the solution to (l) ,  (2) and (7) is equivalent to that of ( l ) ,  ( 2 )  
and (3). 

We now demonstrate that the Green-function solution to ( l ) ,  ( 2 )  and (7) is without 
swirl. We first let h(x ,  y)  = 6 ( x )  6(y), which is equivalent to a dipole singularity in (7). 
This means that 

j j h f  dx’ dy’ 
= 1 .  

j j h d s d y  = h, L2 

Hence h, = V’/L2, where I” is the dimensional volume of this localized topography. 
We now introduce the three-dimensional Fourier transforms of the dependent variable 
as follows. 

(@, r, w,  9 , B )  = (27q-1 JJJ+Lc (u, u ,  w , p , p )  ecik.x dx. -, 
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FIGURE 1. Geometry of the flow. 

Taking the three-dimensional Fourier transforms of (1)-(3) we find that 

and 

where 

2k ,k2(k ; -  1 )  
(2n):r = 

(2,): w = 

k: k2 - k2 H 

2k, kf 
k : k 2 - k 2  H . 

We can now show that 

As 

and 

a r  aw 4k2 k,  k:( 1 - k:)  
~ - - - = (2n)-2 
ak, ak, k?k2-k2 H . 

a r  

aw 
ak2 --m 

( - izv) e-ik'x dx 
- W  

f r n  

- = (2x)-: {JJ ( -  iyw) e-ik*x dx, 

we conclude that yw = zv and that the swirling velocity 

v, = (yw-zv)/r = 0. 

This same result can be more laboriously obtained by inverting Y and W with respect 
to k, through a residue calculation, then inverting with respect to  k, using standard 
tables, and finally comparing the resulting integral with respect to k, (Appendix B). 
The lack of swirl means that the velocity disturbance lies in planes passing through 
the x-axis and can be expressed in terms of the axial component u and a radial 
component v,, where 

w = Y v , ,  w=2, zv 
r r 

where r = (yz + z2$. 
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Since the swirling component vo = 0,  this flow can be described by a stream 
function such that 

19) 

Crapper (1959) used as his dependent variable to the vertical particle displacement 
c(x, y, z ) ,  which is related to w by 

(10) 
a5 
ax’  w=- 

Comparing (9) and (lo), we find that 

Crapper obtained the solution for 5 as an integral over k ,  and evaluated the wavelike 
portion of his solution under various coordinate restraints. I n  $3  we shall obtain a 
more general form of the asymptotic ( p  = (x2+y2+z2): B 1) wavelike solution of 5 
and hence for the asymptotic velocity field. 

3. The far field for the lee waves 
To obtain the far-field solution for < and hence, through ( l l ) ,  +, we revert to  a 

solution to (1)-(5) ( z  B 0).  From (1)-(5) we can obtain, as did Crapper, the following 
relations : 

[(x, y, 0) = 6(x) 6(y), lim 5 = 0. (13a, b )  
z+-m 

For the wavelike part of 5 we require that the vertical component of the group 
velocity be positive. The dispersion relation for small-amplitude internal gravity 
waves in a uniform flow in the x-direction is 

(14) (0’- Uki)2 = N 2 k 2 / k f 2 ,  

where k’2 = ki2+ kL2+kk2 and k g  = Liz+ k z .  Taking the partial derivative of this 
expression with respect to kj and letting w’+O, we find that 

For a positive value of cgZ, kg and ki must have the same sign. 
To solve (12) and (13), we first Fourier transform these equations in x and y, and 

solve the resulting differential equation in z subject to (13) and the group-velocity 
requirement. We obtain, did Crapper, 

where 

and 
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A t  this point Crapper inverted with respect to k ,  and obtained asymptotic expressions 
to 5 by considering various paths of integration in the complex k ,  plane, the paths 
taken depended on the relation between the independent variables. Here we proceed 
more generally via stationary-phase considerations. Our results will be more general 
than Crapper's, but correspond to his under his limiting relations. Also, because of 
( 1  1 )  we also determine U. 

We shall seek an expression for 6, the wavelike part of 5 which arises from the 
domain of integration lkll < 1 ,  - 00 < k ,  < 00. The major contribution to the double 
integral under the conditions that z =I= 0, p % 1 (Lighthill 1978) arise from the integral 
in the neighbourhood of those wavenumbers where the phase in the exponential term 
in (15a) is stationary. The phase is stationary when 

We denote the solutions to these equations as k,* and k,* and k,* = k3(k:, k:) .  As 5 is 
clearly an even function of y, we consider only y 2 0;  we are only considering z > 0. 
Thus the wavelike response exists only for x > 0 and k f k z  < 0. In  determining the 
solution for k* it is most convenient if we use spherical coordinates in physical space. 
We define p = (x2+ y 2 + z 2 ) f ,  r = (y2+z2)t, cos$ = x /p ,  sin$ = r / p ,  sin6 = z / r  and 
cos6 = y / r  (figure 1). We find that there are two solutions for each x, lk* and ,k*, 
with 

sin B cos B cos2 $ 
lk: = sinOcos$, 'kz = - 

sin$ ' 

The contribution to the integral in the vicinity of 2k* is the complex conjugate (c.c.) 
of that in the vicinity of lk* and serves to make w real. To continue with the 
stationary-phase calculation, the phase is expanded about k* as follows : 

2 2  

k*x = 'k**X+!jZ I: k 3 , ~ j ( k i - 1 k ~ ) ( k j - 1 k ~ ) +  ..., 
i-1 j=1 

where 

Since k,. is a symmetric second-order tensor in horizontal-wavenumber space, the 
integral may be performed in the principal-axes system if this tensor, and we find that 

1 exp (i('k*-x+ '6)) 
( 1 8 )  6 =- + C.C., 

2 K Z  IKl K2lt 

where K ,  and K ,  are the principal values of k3, i j  and ' 8  = in if both K ,  and K ,  are 
positive, -in if both are negative, and l6 = 0 if they are of opposite sign. We shall 
show that K ,  and K2 have opposite signs, so that '6 = 0, Further, the value of the 
determinant of a tensor that equals K ,  K ,  in the principal-axes system, is unchanged 
under a rotation so that Kl K2 = k3, 11 k3, 22 - kg, 12. Now, KG, the Gaussian curvature 
of a surface specified by k3 = k3(kl ,  k , )  (see McConnell 1957), is given by 

Kl KZ K -  
- l + k i , , + k $ , ,  
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Using relations (16) in (19) and this result in (18), we find that 
1 eilk.x 

27c p2 I KGI% = 'k* 
5 =-- + C.C. W 

The value of KG for the surface given in (15 b ) ,  which is, of course, the zero-frequency 
dispersion surface for internal gravity waves in a uniform flow, is given in Appendix 
A as 

kt( 1 - k; )  KG = - 
k&( k; + k ; )  ' 

As we can see, K ,  < 0, so that K,  K ,  < 0, and the phase shift is zero as noted earlier. 
Using lk* from (12) in (17) and (20) yields 

1 z cos$(I--sin28cos2$): 
R p 2  sin2 $ 5 =--  cos ( p  sin 0). 

We note that this result is valid for p $ 1 and z =+= 0 (hence $ =# 0). Using (11) 
for @w, we find 

(23) 
l z  
7c r2 

5 = - - cos $(i - sin2 6 cos2 $)$ cos ( p  sin 81, W 

(24) 
1 

cos $(I - sin2 8 cos2 $1; cos ( p  sin 0 ) .  

A referee has pointed out that the expression for cw agrees with that of Berkshire 
(1970). 

For comparison purposes we can rewrite Cw in terms of x, y, z and r as 

If r2 x2 

As noted earlier, Crapper first obtained an expression for Cw by inverting (15a) with 
respect to E, .  He then obtained expressions for i& by considering various integration 
paths in the complex k ,  plane; the nature of the path depended on the relation 
between the x, y and z. He found for x2 + r2,  x2y2 + r4 that 

and for x2 $ r2 and z2 $ y2 that 

1 . 2  
R r3x 6--- 

Our solution under the conditions that are imposed by Crapper yield identical results. 
This should give us some confidence in our results given the differing methods of 
computation employed here and in Crapper's work. We note that at y = 0 

Wurtele (1957) found an asymptotic expression for w which at  y = 0 is proportional 
to cos (x + z2/2x)/x. Hence a discrepancy exists between his result and that of Crapper 
and ourselves. 
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Crapper ended his discussion of the dipole disturbance with his evaluation of &,,. 
Here, as we have shown that t,h = r2</z ,  we can proceed to an evaluation of the 
velocity field. It is again most convenient to utilize the spherical components as 
vg = 0. The radially outward component is up and the component u+ is 90" to the left 
of up in a plane of constant 6 (see figure 1). We find that 

(26) 
1 at,h (1 -2 sin2 6 cos2 $) cos ( p  sin 6 )  

2, =---- 
p p2sin$ a$- np2( 1 -sin2 6 cos2 4); ' 

1 sin6cos$ 
- - (1 - sin2 6 cos2 $); sin (p  sin 8) .  

v$=--- psin$ i3p np sin q5 

We note that the dimensional amplitude of t,h is NhrL2 = N V .  Stagnation points in 
the disturbance velocity field exist only if 6 > and occur when cos # = l / d 2  sin 6 
and p sin 6 = nn. 

The asymptotic velocity and vertical deflection field are discussed in $4. 

4. A description of the asymptotic lee-wave field 
We shall first discuss the velocity field in planes of constant 8. As we can see 

from (24), the flow is in annular cells occupying the region 0 < $ <in and 
(n-$)n ,< psi118 ,< (n+$)n, where n is a large integer. The wavelength is 2n/sin8, 
and is a minimum in the (2, y)-plane. The flow is counterclockwise (clockwise) in each 
annular cell when is odd (even). If 6 < in all streamlines start and end on the z-axis, 
while if 6 > in some streamlines are closed about the stagnation point. The flow for 
8 < in and 6 > in is sketched in figure 2. We note that the solution is valid for p 9 1 ,  
but is sketched for p = 0(1) for convenience. 

The vertical deflection field was discussed in part by Crapper. It is best described 
in planes of constant z .  We let 

Lines of constant phase in planes of constant z have 

and are hyperbolic. Here X o  is the value of Z for a particular phase line a t  y = 0. For 
large y,  Z+ZoyLThc amplitude xis a maximum (0.5) a t  Z = 1 ,  y = 0. Far downstream 
with Z 2  % P ,  A-tXm(y),  where 

Am = i j (  1 + i j 2 ) - : .  

The amplitude far downstream has maximum value of 2/31/3 (=  0.385) a t  y = 1/2/2. 
Contours of constant Aare plotted in figure 3. For 0.5 > 2 > 0.385 the contours form 
closed loops which start and end a t  y = 0. For A< 0.385 the contours are in two 
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FIGURE 2. Streamline patterns for 0 < in (a )  and 0 > an ( b ) .  
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FIGURE 3. Lee-wave amplitude for the vertical displacement field. The solid lines are lines of 
constant amplitude while the dashed lines are of constant phase. 

separate branches, each of which extends to infinity downstream. Also plotted in 
figure 3 are three lines of constant phase. 

We can consider the variation of amplitude along lines of constant phase, i.e. we 
consider x = x((zo, T ) .  We see that 

- 2 0 ( P (  1 + 2 0 2 )  -20"):  

r 3 ( 1  + P )  X(2 , T )  - 

We can show that when So < 2/2, x i s  a maximum a t  F = 1 (y  = 0). while for xo  > 2/2, 
first increases as y increases from zero, and then decreases. The behaviour is seen 

in figure 3 as we move outward along lines of constant phase. We note that the location 
of the crests of the waves depends on both z and Zo, and occur when 

2(1+202) ) :=2xn ,  n =  1 , 2 , . . ,  

The largest wave amplitude I& a t  a crest occurs a t  z = x = 2/2n, y = 0, and equals 
hr/27cz = (1/22/2 7cZ) hr. 
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5. Limitations and extensions of the theory 
Before proceeding to a discussion of the extensions of the theory to a generalized 

shallow topography, let us recall some of the limitations that have been imposed. We 
have assumed that the flow is unbounded and has uniform speed and stability far 
upstream. Under these conditions, the Green-function, or dipole, solution shows no 
swirl. This flow can be described in terms of a stream function which has been 
evaluated far downstream. The presence of a vertical shear will create swirl and hence 
eliminate a streamfunction description. For a discussion of the effects of shear see 
Sharman & Wurtele (1983). 

The presence of rigid horizontal boundaries located at z‘ = f H will create swirl but 
can be accommodated by the theory by using image dipole solutions along the z-axis 
at z’ = f 2 m H  (m = 1,2, ...). As the velocity associated with the dipole falls off with 
z as ( z2+  y2)-l at a fixed x, we can show that the effect of the image series when 
compared with the original dipole is O ( U / N H )  away from the boundaries. Thus if 
z’ 4 H and U/NH 4 1 the description of the flow given here is valid. 

We now proceed with the extension of the theory to our arbitrary shallow 
topography. An arbitrary shallow topography h’(x’, y‘) with horizontal extents L, and 
L, in the x’ and y’ directions, and a double Fourier transform H ( k i , l c i ) ,  can be 
accommodated by inserting H(k’)/H’(O) = (H’(R’)/H(O)/ exp (iy(k’)) into the inte- 
grand on the right-hand side of (15a) and interpreting V’ as the net volume of the 
topography ( =  2 x H ( O ,  0)). For p’ 9 L,, L,, U / N  a stationary-phase calculation can 
be performed with the wavenumber of stationary phase as well as the Gaussian 
curvature of the dispersion surface calculate as before. We obtain for the dimensional 
vertical deflection, 

(1  - sin2 0 cos2 4); cos (p’ sin 8 / L  + y* ) ,  (29) 

where 
sin 0 cos $ ,* sin 8 cos 8 cos2 4 

k;” = , k 2 = -  
L Lsin$ ’ 

and 

2‘ 5’ 
sin8 = r, cos$ = 1, y* = y(k‘*), 

r $ 
I r r + m  

Note that as r’+O with 8 fixed, Ilc,*l-t 00, H(rC,*)+O, and no singularity in l&, exists. 
For topographies that are even functions of x’ and y’, H(lci ,  k;) is real and we have 

V’ H ( k * )  sinBcos$ <;=--- ( 1  -sin2Bcos2$)~cos (p’sinB/L/). 
2xL H’(0) r’ 

We note that as 0+0 with sin$ =i= 0, or cos$+O, Ik*l+O and H’(k*)+H’(O). In 
these regions, the details of the topography are relatively unimportant. On the other 
hand, if x’/z’ 9 1 ,  Ik,*l+0.385(x’/z’)/L a t  y‘/z‘ = .\/$, while lk,*I = 0 a t  y‘ = 0 and as 
y’/z* --f 00. Thus the cross-flow structure of the topography is quite important between 
y‘ = 0 and y‘ - (L,/L) (z’z’): (for large z’/z’ and y’ > z’, 1k;l L, - ZJ,z’z’/y’2L). Now 
Ik:L,I < L,/L a t  y’ = 0 and decreases as y’/z’ increases. Thus the details of the 
structure of the topography in the x’ direction is important in the far field 



106 G. S. Junowitz 

(lk:L,I = O(1)) only if L J L  2 1, and then only when y’lz’ is not large. The region 
near the x‘ axis far downstream is thus the region where the details of the structure 
of the topography is most pronounced; elsewhere the net volume of the topography 
determines the amplitude of deflections. 

6. Summary and conclusions 
We have examined the uniform stratified flow past a localized topography and have 

shown that the velocity disturbance produced by this dipole singularity is without 
swirl. Because of this, the velocity field can be described in terms of gradients of a 
streamfunction. The asymptotic solution for the lee-wave portion of both vertical 
displacement and streamfunction fields were obtained. The latter was more general, 
but consistent with that of Crapper (1959). The vertical displacement field far 
downstream for an arbitrary shallow topography was then determined. Detailed 
topographic dependence was shown to be confined to a region near the x-axis. 

The author acknowledges the suppport of the National Science Foundation under 
grant ATM7816408 for the period in which this work was performed. 

Appendix A. The Gaussian curvature of the dispersion surface 
The surface in wavenumber space given in (15b) can also be written as 

1=- Ik I  1 
k, k’ 

where k, = (k;+k!)? and k = (k:+k$):.  This surface can best be described in 
spherical coordinates with ul, the angle between the wavenumber vector and the k, 
axis, and u2, the angle between the horizontal projection of this vector and the k, 
axis. Thus 

k, = (k sin u,) cos u2, k, = (k sin u,) sin u2,-( 
(A 2) 

k, = k 60s u,, k ,  = k sin ul. i 
Equation (A 1) can be rewritten as 

k = l/lcosu21. 

Because of the symmetry in this surface we consider 0 < u,, u2 < in. Using (A 3) and 
(A 2) we have 

I 
i 

k, = sin u,, 

k, = cos u1 sec u2, 

k, = sin u, tan u2, 

k, = sin u1 sec u2. 

The surface is completely defined in terms of the values of u1 and u2. In obtaining 
KG, the Gaussian curvature of this surface, we make use of relations given in 
McConnell (1957, chap. 14, 993 and 9). The metric tensor of the surface is given by 

Using (A 4) in this expression we find that 

a,, = sec2u2, 

a,, = sec4 u,(l - cos2 u, cos2 u2), 

a,, = a21 = 0. 
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We note that the surface metric tensor is composed of the various dot products of 
aklau,, aklau, which are vectors tangent to the surface in planes of constant u2 and 
u, respectively. As aklau, = 0, the vector ak/au, ties strictly in the direction of 
increasing u1 while aklau, has its components in the radial and increasing u2 
directions. These two vectors are thus orthogonal and a12 = 0. For orthogonal 
coordinates, 

K --'(-(--)+-(--)) a 1 aa,, a 1 aa,, 
- 2 d  aul au, au, U: au, 

where a = a11u2,. Using (A 5 )  in (A 6),  we find that 

C O S ~  U ,  uI 
KG = - 1 - cos2 UI cos2u2. 

Using (A 4), we find that 

Appendix B. The lack of swirl 
The three dimensional Fourier transforms of v and w may be inverted with respect 

to k,  via a residue calculation taking into account the radiation condition, and we 
find that 

and 

where 

and 

k ,  = (k f+k$ ,  

z ( k ? -  1): 

lkll 
C =  for lkll > 1 

The real part of C for Ik,l < 1 arises if the dipole is viewed as being 'slowly switched 
on', i.e. if i t  is assigned a temporal variation as eEt, which vanishes as t+- 00 (see 
Crapper 1959). As k,e-CkH is an odd function and ePCkH is an even function of k,, 
the integrals over this variable in the above expressions may be taken over the 
interval 0 to infinit,y, and the results, which are standard, lead to the following 
integrals over k ,  as E + 0 : 

Hence v ly  = w/z  or zv = yw, as shown earlier. We note that the expression for w is 
simply the partial derivative with respect to  x of Crapper's solution for cw. 
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